Factoring Polynomials - a Review

Factoring Polynomials can be frustrating at times if you don't know or remember the following simple rules. These rules, which are learned in grade 10 , are critical for grades 11 and 12 as well.
Whenever you are asked to factor a polynomial (usually to determine the roots or x-intercepts) the very first thing you should look for is a common factor. Whether you have a binomial (two terms) or a trinomial (three terms) or ANY polynomial, this should be your first step.

Type	Example	Method
Common Factors:	$\begin{aligned} & 3 x^{2}+27 x y+12 x \\ = & 3 x(x+9 y+4) \end{aligned}$	Find the greatest common factor for each term and divide each term by this factor
Simple Trinomials: Trinomials whose coefficient of x^{2} is 1 . Ex: $a x^{2}+b x+c, \quad a=1$	$=\begin{gathered} x^{2}+6 x+5 \\ (x+5)(x+1) \end{gathered}$	Find two numbers whose product is 5 and whose sum is 6 P: $5 \times 1=5$ S: $5+1=6$ \therefore the two numbers are 5 and 1
Complex Trinomials: Trinomials whose coefficient of x^{2} is NOT 1 Ex: $a x^{2}+b x+c, \quad a \neq 1$	$=\begin{gathered} 6 x^{2}+x-12 \\ (2 x+3)(3 x-4) \end{gathered}$ Note: The first is 6 The last is -12 Their product is -72 The one in the middle is 1 .	The product of the first and the last, The sum of the one in the middle. Find 2 numbers that match the above Take your time continue to fiddle. Make 2 fractions with the first on the bottom, Reduce and then you can stop. The answer is there, before your eyes The x on the bottom, the other on top! P: (6) $(-12)=-72 \quad$ S: 1 P: $(9)(-8)=-72$ S: $9+(-8)=1$ $\frac{9}{6}=\frac{3}{2} \quad \frac{-8}{6}=\frac{-4}{3}$ $\therefore(2 x+3)$ and $(3 x-4)$
Perfect Square Trinomials: Trinomials whose first and last terms are perfect squares and whose second term is the square root of each of these terms times two.	1) $\begin{aligned} & 16 x^{2}-24 x+9 \\ = & (4 x-3)^{2} \end{aligned}$ 2) $\begin{aligned} & 4 x^{2}+36 x+81 \\ = & (2 x+9)^{2} \end{aligned}$	Check to see if it is a perfect square trinomial: i) ii) iii) $\begin{aligned} \sqrt{16 x^{2}}= & 4 x \\ & \sqrt{9}=3 \\ & 4 x \times 3 \times 2=24 \end{aligned}$ note: the sign in front of the last term (9 in this ex) must be positive but the sign in front of the x term can be either positive or negative.

Difference of Squares:	$1)$	$81 x^{2}-4$ Just what it says: two perfect squares separated by a minus sign (hence the "difference").	$=(9 x+2)(9 x-2)$
$a^{2}-b^{2}$	$2)$	Take the square root of the $1^{\text {st }}$ term $\sqrt{81 x^{2}}=9 x$ $\left(121 x^{2}-144\right.$	Take the square root the $2^{\text {nd }}$ term $\sqrt{4}=2$
		Make 2 sets of brackets, put the $9 x$ in the first position of each, then add and subtract the 2.	

