M	HF4U C	Chapter 6	: Trigonome	tric Functions /45	Name:/10C	
1.	Convert the $\frac{11\pi}{}$	he measu	res below, she	owing all work.		[6]
a)	9	to degre	ees, round ans	wer to one deci	mal place, if	necessary.
b)	3.748	3 radians	to degrees,	round answer to	one decimal	place, if necessary
c)	167°	to rad	ians, round th	e answer to two	decimal plac	ees.
2.	The radiu	s of a circ	cle is 30 cm.	Determine the a	rc length if tl	ne central angle is 2.1^{π} . [2]
3.	If a ball tr	avels aro	und a circle o	of radius 6 m in 2	2.5 minutes, v	what is the angular speed of the

[2]

ball in radians/s?

4. For each of the following trigonometric ratios, sketch the angle in standard position; identify the related acute angle and find the exact value of the trig ratio. Show all work. [9]

a)
$$\cos \frac{11\pi}{6}$$

b)
$$\csc \frac{13\pi}{4}$$

c) cot
$$\frac{2\pi}{3}$$

5. Sketch the graph of
$$y = \sec x$$
 for one period.

- 6. The value of $\sin \theta = -\frac{25}{26}$, where $0 \le \theta \le 2\pi$.
- (b) Determine **all** possible trigonometric ratios (primary and reciprocal) for θ in Quadrant IV. Leave your answers in radical form.

[6]

(c) Determine θ in radians to two decimal places.

 $y = -2\cos\left(\frac{1}{4}x - \frac{\pi}{8}\right) + 3$ 7. Sketch the graph of

7. Sketch the graph of by determining the amplitude, the equation of the axis of the curve, the period and the phase shift relative to $y = \cos x$. [6]

8. Use the difference quotient to find the approximate instantaneous rate of change for the function $y = 3\tan\left(\frac{\pi}{4}x\right) + 2$ when a = 3 and h = 0.001.

- 9. The depth of water, in metres, in a harbour as a function of time, in hours, can be described by a cosine function. The maximum depth is 12 m, the minimum is 1.5 m. At 12:00 midnight, (t = 0), the depth is at its minimum. In 65 hours, the minimum depth is reached 6 times (including the times at t = 0 and t = 65). [8]
- (a) What is the equation of the cosine function that describes the depth of water in the harbour?
- (b) **At what time** after midnight did the depth of the water **first** reach 6.75m? Round off your answer to the nearest minute.

- 10. It was found that the approval rating of a politician during the time that she was in office
- could be modelled by the sinusoidal function $A(t) = \frac{0.25\sin(\frac{\pi}{730}t) + 0.55}{5}$, where A(t) is the

could be modelled by the sinusoidal function $A(t) = \frac{730}{1000}$, where A(t) is the approval rating and t is the number days that the politician was in office. If the politician was in

office for 8 years, give the intervals during which her approval rating was going down. [8]