MHF4U Chapter 6: Trigonometric Functions Name:
 /45 /10C

1. Convert the measures below, showing all work.
a) $\frac{11 \pi}{9}$ to degrees, round answer to one decimal place, if necessary.
b) 3.748 radians to degrees, round answer to one decimal place, if necessary
c) 167° to radians, round the answer to two decimal places.
2. The radius of a circle is 30 cm . Determine the arc length if the central angle is 2.1π.
3. If a ball travels around a circle of radius 6 m in 2.5 minutes, what is the angular speed of the ball in radians/s?
4. For each of the following trigonometric ratios, sketch the angle in standard position; identify the related acute angle and find the exact value of the trig ratio. Show all work. [9]
a) $\cos \frac{11 \pi}{6}$
b) $\csc \frac{13 \pi}{4}$
c) $\cot \frac{2 \pi}{3}$
5. . Sketch the graph of $y=\sec x$ for one period.
6. The value of $\sin \theta=-\frac{25}{26}$, where $0 \leq \theta \leq 2 \pi$.
(a) In which quadrant(s) could the terminal arm of θ lie? \qquad
(b) Determine all possible trigonometric ratios (primary and reciprocal) for $\theta_{\text {in }}$ Quadrant IV. Leave your answers in radical form.
(c) Determine θ in radians to two decimal places.
7. Sketch the graph of $y=-2 \cos \left(\frac{1}{4} x-\frac{\pi}{8}\right)+3$ the axis of the curve, the period and the phase shift relative to $y=\cos x$. [6]

8. Use the difference quotient to find the approximate instantaneous rate of change for the function

$$
y=3 \tan \left(\frac{\pi}{4} x\right)+2
$$

9. The depth of water, in metres, in a harbour as a function of time, in hours, can be described by a cosine function. The maximum depth is 12 m , the minimum is 1.5 m .
At 12:00 midnight, $(t=0)$, the depth is at its minimum. In 65 hours, the minimum depth is reached 6 times (including the times at $\mathrm{t}=0$ and $\mathrm{t}=65$).
(a) What is the equation of the cosine function that describes the depth of water in the harbour?
(b) At what time after midnight did the depth of the water first reach 6.75 m ?

Round off your answer to the nearest minute.
10. It was found that the approval rating of a politician during the time that she was in office could be modelled by the sinusoidal function $\mathrm{A}(\mathrm{t})=^{0.25 \sin \left(\frac{\pi}{730} t\right)+0.55}$, where $\mathrm{A}(\mathrm{t})$ is the approval rating and t is the number days that the politician was in office. If the politician was in office for 8 years, give the intervals during which her approval rating was going down. [8]

