MHF4U Unit 7 Exponential and Logarithmic Functions

4. Evaluate: $2 \log_2 3 - \log_2 6 - \log_2 12$ [3]

5. Solve x,
$$x^{\varepsilon} R$$
:
(a) $\log_{x} 16 = \frac{4}{5}$
(b) $\log_{9} 3\sqrt{3} = x$
[2]

(c) $45 = 3.5(2.4)^{3x}$. Correct answer to 4 decimal places.

[3]

(d)
$$5^{x+3} = 8^{x-3}$$
. Correct answer to 4 decimal places

[3]

(e)
$$\log_3(x-5) + \log_3(x-3) = 1$$

[4]

6. (a) Determine the mapping rule that would transform the graph of $y = 5^x$ onto the graph of $y = -2(5)^{\frac{1}{2}x-1} + 3$. [2] (x, y) \rightarrow ______ (b) For $y = -2(5)^{\frac{1}{2}x-1} + 3$, state : i. the domain ______ [3] ii. the range ______

iii. the equation of any asymptote

7 Graph $y = \frac{3\log_2(2x+4)}{-2}$ by determining the mapping rule that maps $y = \frac{\log_2 x}{1-2}$ onto $y = \frac{3\log_2(2x+4)}{-2}$ and use points generated by using the rule. Include also the asymptote and its equation on the graph.

[6]

8. The amount of a certain medication decreases by 16% per hour in the bloodstream. A patient was injected 100 ml of the medication at 8:00 a.m.

(a) Write an equation to determine the amount of the medication in the bloodstream t hours after it was administered. Include proper "Let ..." statements to introduce your variable.

[2]

(b) At 4:00 p.m. of the same day the patient will be administered a second dosage of the medication. How much of the first dosage is left in the bloodstream at 4:00 p.m.?

[1]

(c) At what time, between 8:00 a.m. and 4:00 p.m. would the amount of the medication from the first dosage be half of what was administered ? Correct your answer to the nearest minute.

[3]